atlas_counts
supports server-side grouping of data. Grouping can be
used to return record counts grouped by multiple, valid fields (found by
search_fields
. Use galah_group_by
when using the
group_by
argument of atlas_counts
to return record counts summed
by one or more valid fields.
Arguments
- ...
zero or more individual column names to include
- expand
logical
: When passed togroup_by
argument ofatlas_counts
, should factor levels be expanded? Defaults toTRUE
.
Value
If any arguments are provided, returns a data.frame
with
columns name
and type
, as per galah_select()
; if no arguments
are provided, returns NULL
.
Examples
Return record counts since 2010 by year
records <- galah_call() |>
galah_filter(year > 2010) |>
galah_group_by(year) |>
atlas_counts()
records
#> # A tibble: 12 x 2
#> year count
#> <chr> <int>
#> 1 2020 5843340
#> 2 2019 5506924
#> 3 2018 5418009
#> 4 2017 4648403
#> 5 2016 3844787
#> 6 2014 3767573
#> 7 2015 3605917
#> 8 2013 3505658
#> 9 2012 2933981
#> 10 2011 2539004
#> 11 2021 1161557
#> 12 2022 41790
Return record counts since 2010 by year and data provider
records <- galah_call() |>
galah_filter(year > 2010) |>
galah_group_by(year, dataResourceName) |>
atlas_counts()
records
#> # A tibble: 1,048 x 3
#> year dataResourceName count
#> <chr> <chr> <int>
#> 1 2020 eBird Australia 4589800
#> 2 2020 iNaturalist Australia 671032
#> 3 2020 NSW BioNet Atlas 372617
#> 4 2020 Earth Guardians Weekly Feed 71783
#> # ... with 1,044 more rows
Return record counts of Litoria species each year since 2015, limiting results to the top 5 each year
records <- galah_call() |>
galah_identify("Litoria") |>
galah_filter(year > 2015) |>
galah_group_by(year, species) |>
atlas_counts(limit = 5)
records
#> # A tibble: 35 x 3
#> year species count
#> <chr> <chr> <int>
#> 1 2018 Litoria peronii 10497
#> 2 2018 Litoria fallax 7013
#> 3 2018 Litoria caerulea 3073
#> 4 2018 Litoria verreauxii 2980
#> # ... with 31 more rows
See also
galah_select()
, galah_filter()
and
galah_geolocate()
for related methods.